Desarrollo del pensamiento crítico con IA, RA Y RV: una revisión sistemática
Developing critical thinking with AI, AR, and VR: a systematic reviewContenido principal del artículo
El objetivo de esta revisión sistemática es exploral estrategias para desarrollar el pensamiento crítico mediante la integración de Inteligencia Artificial (IA), Realidad Aumentada (RA) y Realidad Virtual (RV) en la educación. Aplicando el protocolo PRISMA, se analizaron 32 artículos de Scopus, Taylor & Francis y Science Direct (2019-2024). Los hallazgos destacan un creciente interés en estas tecnologías, especialmente en educación superior. La RA es la más utilizada, aunque la evaluación del pensamiento crítico presenta desafíos, particularmente en estudios con IA. Las estrategias exitosas fomentan la comunicación, la colaboración y la resolución de problemas. Se sugiere investigar combinaciones de tecnologías y desarrollar nuevas pruebas de evaluación.
The objective of this systematic review is to explore strategies to develop critical thinking through the integration of Artificial Intelligence (AI), Augmented Reality (AR), and Virtual Reality (VR) in education. Applying the PRISMA protocol, 32 articles from Scopus, Taylor & Francis, and Science Direct (2019-2024) were analyzed. The findings highlight a growing interest in these technologies, especially in higher education. AR is the most used, although the evaluation of critical thinking presents challenges, particularly in studies with AI. Successful strategies promote communication, collaboration, and problem-solving. It is suggested to research combinations of technologies and develop new evaluation tests.
Descargas
Detalles del artículo
Abinaya, M., y Vadivu, G. (2023). Aprendizaje transformador a través de la realidad aumentada potenciada por el aprendizaje automático para alumnos de primaria: un análisis de datos en tiempo real. International Journal of Advanced Computer Science and Applications (IJACSA), 14(12). http://dx.doi.org/10.14569/IJACSA.2023.01412107
Ahrash, N., Bissell, A. N., y Lemons, P. P. (2006). A New Method for Assessing Critical Thinking in the Classroom. BioScience, 56(1), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2
Akçayır, M., Akçayır, G., Pektaş, H. M., y Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334–342. https://doi.org/10.1016/j.chb.2015.12.054
Anderson, R. C., y Beach, P. (2022). Measure of opportunity: assessing equitable conditions to learn twenty-first century thinking skills. Learning Environments Research, 25(3), 741–774. https://doi.org/10.1007/s10984-021-09388-5
Astuti, T. N., Sugiyarto, K. H., y Ikhsan, J. (2020). Effect of 3D Visualization on Students’ Critical Thinking Skills and Scientific Attitude in Chemistry. International Journal of Instruction, 13(1), 151–164. https://doi.org/10.29333/iji.2020.13110a
Bueno, P. M. (2023). Enseñar ciencias y promover habilidades de pensamiento crítico: Una articulación necesaria. Holos, 1(39), 1-15. https://doi.org/10.15628/holos.2023.15981
Cain, W. (2024). Prompting Change: Exploring Prompt Engineering in Large Language Model AI and Its Potential to Transform Education. TechTrends, 68(1), 47–57. https://doi.org/10.1007/s11528-023-00896-0
Cárdenas-Sainz, B. A., Barrón-Estrada, M. L., Zatarain-Cabada, R., & Chavez-Echeagaray, M. E. (2023). Evaluation of eXtended reality (XR) technology on motivation for learning physics among students in mexican schools. Computers & Education: X Reality, 3(1), 10-36. https://doi.org/10.1016/j.cexr.2023.100036
Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., y Barro, S. (2023). AI literacy in K-12: a systematic literature review. International Journal of STEM Education, 10(1), 29. https://doi.org/10.1186/s40594-023-00418-7
Catal, C y Tekinerdogan, B. (2019). Machine Learning Applications in Production Lines: A Systematic Literature Review. Computers & Industrial Engineering. 149. 106773. 10.1016/j.cie.2020.106773.
Chang, S.-C., Hsu, T.-C., y Jong, M. S.-Y. (2020). Integration of the peer assessment approach with a virtual reality design system for learning earth science. Computers & Education, 146, 103758. https://doi.org/10.1016/j.compedu.2019.103758
Chien, S.-Y., Hwang, G.-J., y Jong, M. S.-Y. (2020). Effects of peer assessment within the context of spherical video-based virtual reality on EFL students’ English-Speaking performance and learning perceptions. Computers & Education, 146, 103751. https://doi.org/10.1016/j.compedu.2019.103751
Crompton, H., y Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
Dai, Y., Lin, Z., Liu, A., Dai, D., y Wang, W. (2024). Effect of an Analogy-Based Approach of Artificial Intelligence Pedagogy in Upper Primary Schools. Journal of Educational Computing Research, 61(8), 159–186. https://doi.org/10.1177/07356331231201342
Damopolii, I., Paiki, F. F., y Nunaki, J. H. (2022). The Development of Comic Book as Marker of Augmented Reality to Raise Students’ Critical Thinking. TEM Journal, 11(1), 348–355. https://doi.org/10.18421/TEM111-44
Darwin, D., Rusdin, D., Mukminatien, N., Suryati, N., Laksmi, E. D., y Marzuki, M. (2024). Critical thinking in the AI era: An exploration of EFL students’ perceptions, benefits, and limitations. Cogent Education, 11(1). https://doi.org/10.1080/2331186X.2023.2290342
Demircioglu, T., Karakus, M., & Ucar, S. (2023). Developing Students’ Critical Thinking Skills and Argumentation Abilities Through Augmented Reality–Based Argumentation Activities in Science Classes. Science and Education; 32, (4). Netherlands: Springer. https://doi.org/10.1007/s11191- 022- 00369-5
Dunleavy, M., y Dede, C. (2014). Augmented Reality Teaching and Learning. En J. M. Spector, M. D. Merrill, J. Elen, y M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology; 735–745. Springer. https://doi.org/10.1007/978-1-4614-3185-5_59
Dutta, R., Mantri, A., Singh, G., y Singh, N. P. (2023). Measuring the Impact of Augmented Reality in Flipped Learning Mode on Critical Thinking, Learning Motivation, and Knowledge of Engineering Students. Journal of Science Education and Technology, 32(6), 912–930. https://doi.org/10.1007/s10956-023-10051-2
Dwyer, C. P., Hogan, M. J., y Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity, 12, 43–52. https://doi.org/10.1016/j.tsc.2013.12.004
Facione, P. A. (2011). Critical thinking: What it is and why it counts. Insight Assessment.
Faridi, H., Tuli, N., Mantri, A., Singh, G., y Gargrish, S. (2021). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29(1), 258–273. https://doi.org/10.1002/cae.22342
Figueroa Céspedes, I., Pezoa Carrasco, E., Elías Godoy, M., y Díaz Arce, T. (2020). Habilidades de Pensamiento Científico: Una propuesta de abordaje interdisciplinar de base sociocrítica para la formación inicial docente. Revista de Estudios y Experiencias En Educación, 19(41), 257–286. https://doi.org/10.21703/rexe.20201941figueroa14
Goyanes, M., y Lopezosa, C. (2024). ChatGPT en Ciencias Sociales: revisión de la literatura sobre el uso de inteligencia artificial (IA) de OpenAI en investigación cualitativa y cuantitativa. Anuario ThinkEPI, 18. https://doi.org/10.3145/thinkepi.2024.e18a04
Huang, X. (2024). Research on the Construction of English Intelligent Teaching Mode in Colleges and Universities Facilitated by Artificial Intelligence Technology. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-0657
Hyder, H., Baloch, G., Saad, K., Shaikh, N., Baseer, A., y Bhatti, J. (2021). Particle Physics Simulator for Scientific Education using Augmented Reality. International Journal of Advanced Computer Science and Applications, 12(2). https://doi.org/10.14569/IJACSA.2021.0120284
Ikhsan, J., Sugiyarto, K. H., y Astuti, T. N. (2020). Fostering Student’s Critical Thinking through a Virtual Reality Laboratory. International Journal of Interactive Mobile Technologies (IJIM), 14(08), 183. https://doi.org/10.3991/ijim.v14i08.13069
Lai, E. R. (2011). Critical thinking: A literature review. Pearson.
Lampropoulos, G., Keramopoulos, E., Diamantaras, K., y Evangelidis, G. (2023). Integrating Augmented Reality, Gamification, and Serious Games in Computer Science Education. Education Sciences, 13(6), 618. https://doi.org/10.3390/educsci13060618
Lengua Cantero, C., Bernal Oviedo, G., Flórez Balboza, W., y Velandia Feria, M. (2020). Tecnologías emergentes en el proceso de enseñanza-aprendizaje: hacia el desarrollo del pensamiento crítico. Revista Electrónica Interuniversitaria de Formación Del Profesorado, 23(3). https://doi.org/10.6018/reifop.435611
Li, K., Kim, D. J., Lang, K. R., Kauffman, R. J., y Naldi, M. (2020). How should we understand the digital economy in Asia? Critical assessment and research agenda. Electronic Commerce Research and Applications, 44, 101004. https://doi.org/10.1016/j.elerap.2020.101004
Lin, X.-F., Hwang, G.-J., Wang, J., Zhou, Y., Li, W., Liu, J., y Liang, Z.-M. (2023). Effects of a contextualised reflective mechanism-based augmented reality learning model on students’ scientific inquiry learning performances, behavioural patterns, and higher order thinking. Interactive Learning Environments, 31(10), 6931–6951. https://doi.org/10.1080/10494820.2022.2057546
Michalon, B y Camacho-Zuñiga, C. (2023). ChatGPT, a brand-new tool to strengthen timeless competencies. Frontiers in Education. 8. 10.3389/feduc.2023.1251163.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Richards, S. (2023). Student Engagement Using HoloLens Mixed-Reality Technology in Human Anatomy Laboratories for Osteopathic Medical Students: an Instructional Model. Medical Science Educator, 33(1), 223–231. https://doi.org/10.1007/s40670-023-01728-9
Rizki, I. A., Suprapto, N., Saphira, H. V., Alfarizy, Y., Ramadani, R., Saputri, A. D., y Suryani, D. (2024). Cooperative model, digital game, and augmented reality-based learning to enhance students critical thinking skills and learning motivation. Journal of Pedagogical Research, 8(2), 1-18. https://doi.org/10.33902/JPR.202423825
Rusandi, M. A., Ahman, A., Saripah, I., Khairun, D. Y., y Mutmainnah, M. (2023). No worries with ChatGPT: building bridges between artificial intelligence and education with critical thinking soft skills. Journal of Public Health, 45(3), e602–e603. https://doi.org/10.1093/pubmed/fdad049
Saavedra, A. R., y Opfer, V. D. (2012). Learning 21st-Century Skills Requires 21st-Century Teaching. Phi Delta Kappan, 94(2), 8–13. https://doi.org/10.1177/003172171209400203
Schmidt, J. T., y Tang, M. (2020). Digitalization in Education: Challenges, Trends and Transformative Potential. En A. T. Binner, A. T., y M. Böhm (Eds.), Führen und Managen in der digitalen Transformation (pp. 287–312). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-28670-5_16
Shen, X., y Teng, M. F. (2024). Three-wave cross-lagged model on the correlations between critical thinking skills, self-directed learning competency and AI-assisted writing. Thinking Skills and Creativity, 52, 101524. https://doi.org/10.1016/j.tsc.2024.101524
Srimadhaven, T., Chris Junni, AV, Harshith, N., Jessenth Ebenezer, S., Shabari Girish, S. y Priyaadharshini, M. (2020). Analítica de aprendizaje: realidad virtual para el curso de programación en educación superior. Procedia Comput Sci. 172, 433–437. doi: 10.1016/j.procs.2020.05.095
Syawaludin, A., Gunarhadi, G., Rintayati, P. (2019) Enhancing elementary school students’ abstract reasoning in science learning through augmented reality-based interactive multimedia. J. Pendidik. IPA Indones. 8, 288–297
Tobarra L, Trapero AP, Pastor R, Robles-Gómez A, Hernandez R, Duque A, Cano J (2020) Enfoque de aprendizaje basado en juegos para la ciberseguridad. Ponencia presentada en la conferencia global de educación en ingeniería del IEEE de 2020 (EDUCON), 1125-1132. https://doi.org/10.1109/EDUCON45650.2020.9125202
Voreopoulou, A., Mystakidis, S., y Tsinakos, A. (2024). Augmented Reality Escape Classroom Game for Deep and Meaningful English Language Learning. Computers, 13(1), 24. https://doi.org/10.3390/computers13010024
Wen, Y., Wu, L., He, S., Ng, N. H.-E., Teo, B. C., Looi, C. K., y Cai, Y. (2023). Integrating augmented reality into inquiry-based learning approach in primary science classrooms. Educational Technology Research and Development, 71(4), 1631–1651. https://doi.org/10.1007/s11423-023-10235-y
Wu, W.-C. V., Manabe, K., Marek, M. W., y Shu, Y. (2023). Enhancing 21st-century competencies via virtual reality digital content creation. Journal of Research on Technology in Education, 55(3), 388–410. https://doi.org/10.1080/15391523.2021.1962455
Wu, YT y Tsai, CC (2022). Razonamiento informal de estudiantes de secundaria sobre un tema sociocientífico, en relación con las creencias epistemológicas científicas y las estructuras cognitivas. Revista Internacional de Educación en Ciencias, 33 (3), 371–400.
Zhao, J.-H., Chen, Z.-W., y Yang, Q.-F. (2024). I do and I understand: A virtual reality-supported collaborative design-assessing activity for EFL students. System, 121, 103213. https://linkinghub.elsevier.com/retrieve/pii/S0346251X2300235X