Contenido principal del artículo

Rosa Ipanaqué Aguilar
Juan Vicente Sedano Montes

La personalización de programas de capacitación y desarrollo mediante algoritmos de aprendizaje automático en la actualidad ha sido utilizada en distintas disciplinas, pero el entendimiento de estos programas y sus algoritmos para su aprendizaje automático siguen siendo un área de suma importancia. El objetivo del estudio fue el análisis de programas y algoritmos de aprendizaje automático. La revisión sistemática a la cual fue llevada es el método PRISMA. Las fuentes de información fueron las bases de datos de Scopus y Scielo. Los operadores booleanos fueron AND y OR. El número total de estudios hallados fueron 2223, de los cuales se lograron seleccionar 55 artículos de India, Iraq, Países bajos, Brasil, China, Canadá, Reino Unido, Tailandia, Indonesia, Inglaterra, Corea del Sur, Estados Unidos, Reino Unido, Grecia, Túnez, Países bajos, Rusia, Australia, Suiza, Turquía, Dinamarca, Sudáfrica, Grecia, Australia, Pakistán, Finlandia, España e Irán. Según los resultados, la personalización de programas de capacitación y desarrollo mediante algoritmos de aprendizaje tienen un impacto positivo en la actualidad ya que favorece el aprendizaje constante, optimiza nuestro tiempo de trabajo y nos adapta a los cambios y tendencias.

The customization of training and development programs using machine learning algorithms has been used in different disciplines, but the understanding of these programs and their machine learning algorithms is still an area of great importance. The objective of the study was to analyze the various existing programs, their operation and their purpose in training. The systematic review was carried out using the PICO method. The sources of information were the Scopus and Scielo databases. The Boolean operators were AND and OR. The total number of studies found was 80, of which 40 articles were selected from the United States, Thailand, United Kingdom, India, Netherlands, England, South Korea, Indonesia, Iraq, China and Russia. According to the results, the customization of training and development programs through learning algorithms has a positive impact nowadays as it favors constant learning, optimizes our working time and adapts us to changes and trends.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Ipanaqué Aguilar, R. ., & Sedano Montes, J. V. . (2025). Personalización de programas de capacitación y desarrollo mediante algoritmos de aprendizaje automático. Horizontes. Revista De Investigación En Ciencias De La Educación, 9(40), 789–803. https://doi.org/10.33996/revistahorizontes.v9i40.1175
Sección
ARTÍCULO DE REVISIÓN
Bookmark and Share
Referencias

Abood, M., y Abdul-Majeed, G. H. (2025). Enhancing Multi-Class DDoS Attack Classification using Machine Learning Techniques. Journal of Advanced Research in Applied Sciences and Engineering Technology, 43(2), 75–92. https://doi.org/10.37934/araset.43.2.7592

Andi, A., Ainun, A., Armin, L y Edy, R. (2024). Ensemble Transfer Learning for Hand-sign Digit Image Classification. Journal of Advanced Research in Applied Sciences and Engineering Technology, 43(1), 95–111. https://doi.org/10.37934/araset.43.1.95111

Ataullah, I., y Livesey, A. (2024). Maintaining High Professional Standards, morally, ethically and fairly: what doctors need to know right now. https://doi.org/10.1136/postgradmedj-2020

Banarase, S. J., y Shirbahadurkar, S. (2024). Orchard Guard: Deep Learning powered apple leaf disease detection with MobileNetV2 model. In Pg 1 J. Integr. Sci. Technol. 2024 (4). http://pubs.thesciencein.org/jist

Carini, C., y Seyhan, A. A. (2024). Tribulations and future opportunities for artificial intelligence in precision medicine. In Journal of Translational Medicine; 22, (1). BioMed Central Ltd. https://doi.org/10.1186/s12967-024-05067-0

Cascón-Katchadourian, J., Rodríguez-Domínguez, C., Carranza-García, F., y Torres-Salinas, D. (2023). GeoAcademy: web platform and algorithm for automatic detection and location of geographic coordinates and toponyms in scientific articles. Revista Espanola de Documentacion Cientifica, 46(4). https://doi.org/10.3989/redc.2023.4.1393

Choi, I., Kwon, S., Rojewski, J. W., Hill, J. R., Kim, E. S., Fisher, E., Thomas, R. S., y McCauley, L. (2024). Conceptualization, development, and early dissemination of eMPACTTM: A competency-based career navigation system for translational research professionals. Journal of Clinical and Translational Science, 8(1). https://doi.org/10.1017/cts.2023.693

Daza, A., Miranda, J., Cornelio, J. B., López, A. R., y Ponce, C. F. (2023). Predicting the depression in university students using stacking ensemble techniques over oversampling method. Informatics in Medicine Unlocked, 41. https://doi.org/10.1016/j.imu.2023.101295

Deng, M., Liu, Y., y Chen, L. (2023). AI-driven innovation in ethnic clothing design: an intersection of machine learning and cultural heritage. Electronic Research Archive, 31(9), 5793–5814. https://doi.org/10.3934/era.2023295

du Gay, P y Lopdrup Hjorth, T. (2024). Organizing States: The continuing relevance of formal organization within political administration. Organization Theory, 5(1). https://doi.org/10.1177/26317877241235944

Guo, Z., Xu, X y Chen, X. (2024). Test Case Generation Evaluator for the Implementation of Test Case Generation Algorithms Based on Learning to Rank. Computer Systems Science and Engineering, 35(7). https://doi.org/10.32604/csse.2023.043932

Gupta, N., Hayder, Z., Norris, R. P., Huynh, M., y Petersson, L. (2024). RadioGalaxyNET: Dataset and novel computer vision algorithms for the detection of extended radio galaxies and infrared hosts. Publications of the Astronomical Society of Australia, 41. https://doi.org/10.1017/pasa.2023.64

Gupta, R., Rajkumar, A., y Beemkumar, N. (2023). Predicting software defects with swarm-intelligence-based machine learning algorithm for improved process quality. Multidisciplinary Science Journal, 5. https://doi.org/10.31893/multiscience.2023ss0311

Huo, C., Husnain, M., y Guo, F. (2023). Ethical leadership and workplace behavior in the education sector: The implications of employees’ ethical work behavior.

Kaffashpoor, A., y Sadeghian, S. (2020). The effect of ethical leadership on subjective wellbeing, given the moderator job satisfaction (a case study of private hospitals in Mashhad). BMC Nursing, 19(1). https://doi.org/10.1186/s12912-020-00496-w

Karali, N., Mastrokoukou, S., y Livas, C. (2023). Mindful minds and entrepreneurial spirits in higher education: a scoping review Introduction: Mindfulness at Higher Education Institutions (HEIs) may enhance personal development, learning, and entrepreneurial thinking. Thus, this scoping review investigates the effects of mindfulness on HEI entrepreneurship education, focusing on teaching, learning, and entrepreneurial intention. https://doi.org/10.17605/OSF.IO/YJTA

Khammarnia, M., Golestani, Z. S., Ranjbar, A. A., Peyvand, M., Khorram, A., y Setoodehzadeh, F. (2022). Relationship of Information Literacy and Professional Ethics with Career Development. Shiraz E Medical Journal, 23(9). https://doi.org/10.5812/semj-111166

Khan, H. S., Siddiqui, S. H., Zhiqiang, M., Weijun, H., y Mingxing, L. (2021). “Who Champions or Mentors Others”? The Role of Personal Resources in the Perceived Organizational Politics and Job Attitudes Relationship. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.609842

Khan, M., Mahmood, A., y Shoaib, M. (2022). Role of Ethical Leadership in Improving Employee Outcomes through the Work Environment, Work-Life Quality and ICT Skills: A Setting of China-Pakistan Economic Corridor. In Sustainability (Switzerland); 14, (17). MDPI. https://doi.org/10.3390/su141711055

Kim, M. J., y Kim, B. J. (2020). The performance implications of job insecurity: The sequential mediating effect of job stress and organizational commitment, and the buffering role of ethical leadership. International Journal of Environmental Research and Public Health, 17(21), 1–16. https://doi.org/10.3390/ijerph17217837

Kooptiwoot, S., Kooptiwoot, S., y Javadi, B. (2024). Application of regression decision tree and machine learning algorithms to examine students’ online learning preferences during COVID-19 pandemic. International Journal of Education and Practice, 12(1), 82–94. https://doi.org/10.18488/61.v12i1.3619

Lee, H., Kim, J., y Jung, H. S. (2024). Deep-learning-based stock market prediction incorporating ESG sentiment and technical indicators. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-61106-2

Maki, P.L., Shea, P., Alexander, B. (2023). Advance praise for Transforming Digital Learning and Assessment.

Moscol-Albañil, I., Solórzano-Requejo, W., Rodriguez, C., Ojeda, C., y Díaz, A. (2024a). Innovative AI-driven design of patient-specific short femoral stems in primary hip arthroplasty. Materials and Design, 240. https://doi.org/10.1016/j.matdes.2024.112868

Mumtaz, S., Tariq, M., y Abbas, M. (2023). ¿Do ethical values buffer against workplace stressors? Interactive effects of challenge-hindrance stressors and Islamic work ethics on individualized change outcomes. Estudios de Psicologia, 44(2–3), 321–352. https://doi.org/10.1080/02109395.2023.2252253

Ninno, F., Tsui, J., Balabani, S., y Díaz-Zuccarini, V. (2023). A systematic review of clinical and biomechanical engineering perspectives on the prediction of restenosis in coronary and peripheral arteries. In JVS-Vascular Science; 4. Elsevier Inc. https://doi.org/10.1016/j.jvssci.2023.100128

Oh, J., Yeom, J., Madika, B., Kim, K. M., Liow, C. H., Agar, J. C., y Hong, S. (2024). Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images. Npj Computational Materials, 10(1). https://doi.org/10.1038/s41524-024-01279-6

Pham, T., Ghafoor, M., Grañana-Castillo, S., Marzolini, C., Gibbons, S., Khoo, S., Chiong, J., Wang, D., y Siccardi, M. (2024). DeepARV: ensemble deep learning to predict drug-drug interaction of clinical relevance with antiretroviral therapy. Npj Systems Biology and Applications, 10(1). https://doi.org/10.1038/s41540-024-00374-0

Pinto-Molina, M., Caballero-Mariscal, D., y García-Marco, F. J. (2021). Assessment of the implementation of the mobile apps in Spanish Universities. Revista Espanola de Documentacion Cientifica, 44(1), 1–19. https://doi.org/10.3989/redc.2021.1.1755

Qu, P., Yuan, Q., Du, F., y Gao, Q. (2024). An improved manta ray foraging optimization algorithm. Qu, P., Yuan, Q., Du, F. et al. An Improved Manta Ray Foraging Optimization Algorithm. Sci Rep 14, 10301, 14(1). https://doi.org/10.1038/s41598-024-59960-1

Radjab, E., Tjambolang, T. A., Tang, M., Meiniza, Y., Amiruddin, A., Mandasari, N. F., y Sabbar, S. D. (2024). Beyond ethics: How perceived organizational support amplifies the impact of ethical HRM on employee commitment and performance. Journal of Infrastructure, Policy and Development, 8(4). https://doi.org/10.24294/jipd.v8i4.3352

Rao, D. P., Savoy, F. M., Tan, J., Fung, B., Bopitiya, C. M., Sivaraman, A., y Vinekar, A. (2023). Development and validation of an artificial intelligence based screening tool for detection of retinopathy of prematurity in a South Indian population. Frontiers in Pediatrics, 11. https://doi.org/10.3389/fped.2023.1197237

Ruzicki, J., Holden, M., Cheon, S., Ungi, T., Egan, R., y Law, C. (2023). Use of Machine Learning to Assess Cataract Surgery Skill Level With Tool Detection. Ophthalmology Science, 3(1). https://doi.org/10.1016/j.xops.2022.100235

Shiva, V., y Kathiravan, M. (2024). Virtual Reality Technology and Artificial Intelligence for Television and Film Animation. Journal of Advanced Research in Applied Sciences and Engineering Technology, 43(1), 263–273. https://doi.org/10.37934/araset.43.1.263273

Silva, A. D., da, Gomes, M. F. da C., Gregianini, T. S., Martins, L. G., y Veiga, A. B. G. da. (2024). Machine learning in predicting severe acute respiratory infection outbreaks. Cadernos de Saude Publica, 40(1). https://doi.org/10.1590/0102-311XEN122823

Sirivella, Y., e Jain, A. (2023). A Hybrid Metaheuristic Algorithm for Diseases Classification Using UAV Images. Journal of Computer Science, 19(10), 1231–1242. https://doi.org/10.3844/jcssp.2023.1231.1241

Sivapurnima, S., y Manjula, D. (2023). Adaptive Deep Learning Model for Software Bug Detection and Classification. Computer Systems Science and Engineering, 45(2), 1233–1248. https://doi.org/10.32604/csse.2023.025991

Syahrizal, S., Yasmi, F., y Mary, T. (2024). AI-Enhanced Teaching Materials for Education: A Shift Towards Digitalization. International Journal of Religion, 5(1), 203–217. https://doi.org/10.61707/j6sa1w36

van Kooten, M. J., Tan, C. O., Hofmeijer, E. I. S., van Ooijen, P. M. A., Noordzij, W., Lamers, M. J., Kwee, T. C., Vliegenthart, R., y Yakar, D. (2024). A framework to integrate artificial intelligence training into radiology residency programs: preparing the future radiologist. Insights into Imaging, 15(1). https://doi.org/10.1186/s13244-023-01595-3

Varzakas, T., y Antoniadou, M. (2024). A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. In Foods (Vol. 13, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13081224

Wang, Y., Zhang, H., Xu, Z., Zhang, S., y Guo, R. (2023). TransUFold: Unlocking the structural complexity of short and long RNA with pseudoknots. Mathematical Biosciences and Engineering, 20(11), 19320–19340. https://doi.org/10.3934/mbe.2023854

Wang, Z., Ren, S., Chadee, D., y Chen, Y. (2024). Employee Ethical Silence Under Exploitative Leadership: The Roles of Work Meaningfulness and Moral Potency. Journal of Business Ethics, 190(1), 59–76. https://doi.org/10.1007/s10551-023-05405-0

Wu, H., Xing, T., Li, W., Chen, H., Kang, Y., y Li, J. (2023). Robotic Scheduling Strategies based on Machine Learning Algorithm. Journal of Physics: Conference Series, 2562(1). https://doi.org/10.1088/1742-6596/2562/1/012025

Zhang, Q., Cheng, J., Zhou, C., Jiang, X., Zhang, Y., Zeng, J., y Liu, L. (2023). PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1259877

Zviyita, I., y Mare, A. (2024). Ethical Issues Confronting Namibian Hybrid Media Organizations in the Digital Age. Journalism and Mass Communication Quarterly. https://doi.org/10.1177/10776990241240118