Contenido principal del artículo

Jorge David Velasquez-Alarcón
Juan Mendez-Vergaray
Edward Flores

El Matlab es un software que ayuda a promover la investigación mediante el procesamiento de imágenes; es por ello, que el objetivo de esta indagación fue analizar las aplicaciones del Matlab en el aprendizaje de la matemática, geometría, álgebra y ecuaciones diferenciales. En la revisión sistemática de enfoque cualitativo, se utilizó el análisis documental de artículos científicos; la búsqueda se realizó en la base de datos Scopus, para lo cual se realizó el filtrado respetando la declaración PRISMA; además, se consideró los criterios de inclusión y exclusión; el período de búsqueda fue en el rango 2013-2022. Se obtuvieron 30 artículos que cumplieron con las características para el estudio. Se determinó la efectividad del software MATLAB en el aprendizaje de la matemática y otras áreas del conocimiento. Se concluye su utilidad en el campo académico para realizar gráficas, cálculo de matrices grandes y la solución de diferentes ecuaciones diferenciales.

Matlab is a software that helps to promote research through image processing; therefore, the objective of this research was to analyze the applications of Matlab in the learning of mathematics, geometry, algebra and differential equations. In the qualitative approach systematic review, the documentary analysis of scientific articles was used; the search was performed in the Scopus database, for which the filtering was performed respecting the PRISMA statement; in addition, the inclusion and exclusion criteria were considered; the search period was in the range 2013-2022. Thirty articles were obtained that met the characteristics for the study. The effectiveness of MATLAB software in the learning of mathematics and other areas of knowledge was determined. Its usefulness in the academic field for graphing, calculation of large matrices and the solution of different differential equations was concluded.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Velasquez-Alarcón, J. D., Mendez-Vergaray, J., & Flores, E. (2023). Matlab en las aplicaciones de la matemática. Horizontes. Revista De Investigación En Ciencias De La Educación, 7(31), 2555–2574. https://doi.org/10.33996/revistahorizontes.v7i31.684
Sección
ARTÍCULO DE REVISIÓN
Biografía del autor/a

Jorge David Velasquez-Alarcón, Universidad César Vallejo. Lima, Perú

Cursando el doctorado en Educación de la Universidad César Vallejo. Docente ordinario de la Universidad Nacional Federico Villarreal, Perú.

Juan Mendez-Vergaray, Universidad César Vallejo. Lima, Perú

Licenciado en psicología, Universidad Nacional Mayor de San Marcos. Especialista en Audición, Lenguaje y Aprendizaje de la PUCP. Profesor de la Universidad César Vallejo Lima-Perú, en la Escuela de Postgrado en el programa de Doctorado. Trabaja en el área de investigación, desarrolla temas de inclusión educativa, gestión y gobernanza, educación, Perú.

Edward Flores, Universidad Nacional Federico Villarreal. Lima, Perú

Doctor en Ingeniería de Sistemas. Maestro en Administración.  Ingeniero de Sistemas. Licenciado en Educación. Docente Principal e Investigador de la Universidad Nacional Federico Villarreal, Evaluador de acreditación por ICACIT para universidades, certificado como Project Manager Professional PMP®, SMC®, SFC®, KIKF®, ITIL4®, ISO 27001F® entre otros, Perú.

Bookmark and Share
Referencias

Alloqmani, A., Alsaedi, O., Bahatheg, N., Alnanih, R., y Elrefaei, L. (2021). Design Principles-Based Interactive Learning Tool for Solving Nonlinear Equations. Computer Systems Science & Engineering, 40(3), 1023–1042. https://doi.org/10.32604/csse.2022.019704

Asad, J., Jarrar, R., Khalilia, H., Mallak, S., y Shanak, H. (2021). The mechanics of the vibrating triangle system. Mathematics and Computer Science, 1(63), 27–38. https://doi.org/10.31926/but.mif.2021.1.63.1.3

Bornstein, N. (2020). Teaching Transformations of Trigonometric Functions with Technology. Journal of Interactive Media in Education, 1(15), 1–9. https://doi.org/https://doi.org/10.5334/jime.503

Brahma, J. (2021). Mathematical modelling and simulation for one dimensional-two-phase flow equation in petroleum reservoir: A matlab algorithm approach. WSEAS Transactions on Applied and Theoretical Mechanics, 16, 213–221. https://doi.org/10.37394/232011.2021.16.24

Caglayan, G. (2018). Linear Algebra Students’ Understanding of Similar Matrices and Matrix Representations of Linear Transformations in a MATLAB-Assisted Learning Environment. Computers in the Schools, 35(3), 204–225. https://doi.org/10.1080/07380569.2018.1491774

Chamorro, O., Ortega, O., Morales, G., Quispe, A., Trinidad, N., Gamarra, S., y León, C. (2021). Online Education and Engineering Students’ Perception of Pedagogical Quality, in Learning the Process Control Course with MATLAB. International Journal of Emerging Technologies in Learning, 16(21), 193–200. https://doi.org/10.3991/IJET.V16I21.25235

Cruz, E., y Jurado, F. (2020). Boundary Control for a Certain Class of Reaction-Advection-Diffusion System. Mathematics. https://doi.org/10.3390/math8111854

Esguerra, B., González, N., y Acosta, A. (2018). Mathematical software tools for teaching of complex numbers. Revista Facultad de Ingeniería, 27(48), 79–89. https://doi.org/10.19053/01211129.v27.n48.2018.8403

Gao, N. (2019). Visualization teaching of deformation monitoring and data processing based on MATLAB. International Journal of Emerging Technologies in Learning, 14(2), 42–53. https://doi.org/10.3991/IJET.V14I02.9983

Gaspar, J. M. (2018). Bridging the Gap between Economic Modelling and Simulation: A Simple Dynamic Aggregate Demand-Aggregate Supply Model with Matlab. Hindawi Journal of Applied Mathematics, 2018. https://doi.org/https://doi.org/10.1155/2018/3193068

Gayoso, V., Hernández, L., Martín, A., y Queiruga, A. (2021). Using free mathematical software in engineering classes. Axioms, 10(4), 1–18. https://doi.org/10.3390/axioms10040253

Georgilakis, P. S., Member, S., Orfanos, G. A., y Hatziargyriou, N. D. (2014). Computer-Assisted Interactive Learning for Teaching Transmission Pricing Methodologies. IEEE Transactions on Power Systems, 29(4), 1972–1980. https://doi.org/10.1109/TPWRS.2013.2295197

Gil, P. (2017). Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing. Journal of Science Education and Technology, 26(5), 508–518. https://doi.org/10.1007/S10956-017-9695-Z

Hamad, Z., y Abdulrahman, I. (2022). Deep learning-based load forecasting considering data reshaping using MATLABSimulink. International Journal of Energy and Environmental Engineering, 13(2), 853–869. https://doi.org/10.1007/s40095-022-00480-x

Higham, C. F., y Higham, D. J. (2019). Deep Learning: An Introduction for Applied Mathematicians. SIAM Review, 61(4), 860–891. https://doi.org/10.1137/18M1165748

Ibáñez, J., Alonso, J. M., Alonso-Jordá, P., Defez, E., y Sastre, J. (2022). Two Taylor Algorithms for Computing the Action of the Matrix Exponential on a Vector. Algorithms, 15(2), 1–17. https://doi.org/10.3390/a15020048

Ilmavirta, J., Koskela, O., y Railo, J. (2020). Torus computed tomography. SIAM Journal on Applied Mathematics, 80(4), 1947–1976. https://doi.org/10.1137/19m1268070

Jia, J., y Li, S. (2017). An efficient numerical algorithm for the determinant of a cyclic pentadiagonal Toeplitz matrix. Computers and Mathematics with Applications, 74(12), 2992–2999. https://doi.org/10.1016/j.camwa.2017.07.035

Jia, J. T. (2018). Numerical algorithms for the determinant evaluation of general Hessenberg matrices. Journal of Mathematical Chemistry, 56(1), 247–256. https://doi.org/10.1007/S10910-017-0794-0

Korzec, M. D., y Ahnert, T. (2013). Time-stepping methods for the simulation of the self-assembly of nano-crystals in MATLAB on a GPU. Revista de Física Computacional, 251, 396–413. https://doi.org/10.1016/j.jcp.2013.05.040

Li, L. (2017). Partial differential equation calculation and visualization. Journal of Discrete Mathematical Sciences and Cryptography, 20(1), 217–229. https://doi.org/10.1080/09720529.2016.1178918

Massei, S., Robol, L., y Kressner, D. (2020). Hm-toolbox: Matlab software for hodlr and HSS matrices. SIAM Journal on Scientific Computing, 42(2), C43–C68. https://doi.org/10.1137/19M1288048

Matyushkin, I. V, Rubis, P. D., y Zapletina, M. A. (2021). Estudio experimental de la dinámica. Mapeos de valores complejos simples y relacionados con celosías: arquitectura e interfaz del programa del autor para modelado la arquitectura y la interfaz del software del autor. Investigación y modelado informático, 13(6), 1101–1124. https://doi.org/10.20537/2076-7633-2021-13-6-1101-1124

Nasser, M. M. S. (2020). PlgCirMap: A MATLAB toolbox for computing conformal mappings from polygonal multiply connected domains onto circular domains. SoftwareX, 11, 100464. https://doi.org/10.1016/j.softx.2020.100464

Niu, B. (2016). Codimension-two Bifurcations Induce Hysteresis Behavior and Multistabilities in Delay-coupled Kuramoto Oscillators. Dinámica No Lineal, 87(2), 803–814. https://arxiv.org/pdf/1608.03349.pdf

Pavón, P., Portillo, G., Rincón, A., y Rodríguez, L. (2021). Influence of the fractal geometry on the mechanical resistance of cantilever beams designed through topology optimization. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/app112210554

Rios, V., Mollinedo, R., y Quispitupa, M. (2017). Influencia del software Matlab en el aprendizaje de sistemas de ecuaciones Diferenciales Ordinarias De Primer Orden En los estudiantes de ingeniería Universidad Alas Peruanas Puerto Maldonado. CEPROSIMAD, 05(2), 24–38. file:///C:/Users/DAVID/Downloads/46-Article Text-98-2-10-20180515 (4).pdf

Roberts, K. J., Pringle, W. J., y Westerink, J. J. (2019). OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling. Geoscientific Model Development, 12(5), 1847–1868. https://doi.org/10.5194/GMD-12-1847-2019

Saharizan, N. S., y Zamri, N. (2019). Numerical solution for a new fuzzy transform of hyperbolic goursat partial differential equation. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 292–298. https://doi.org/10.11591/ijeecs.v16.i1.pp292-298

Sangwine, S. J., y Hitzer, E. (2017). Clifford Multivector Toolbox (for MATLAB). Advances in Applied Clifford Algebras, 27(1), 539–558. https://doi.org/10.1007/s00006-016-0666-x

Sastre, J., Ibáñez, J., Alonso, P., Peinado, J., y Defez, E. (2017). Two algorithms for computing the matrix cosine function. Applied Mathematics and Computation, 312, 66–77. https://doi.org/10.1016/j.amc.2017.05.019

Shah, K., Naz, H., Sarwar, M., y Abdeljawad, T. (2022). On spectral numerical method for variable-order partial differential equations. AIMS Mathematics, 7(6), 10422–10438. https://doi.org/10.3934/MATH.2022581

Smith, H., y Norato, J. A. (2020). A MATLAB code for topology optimization using the geometry projection method. Optimización Estructural y Multidisciplinar, 1579–1594. https://doi.org/10.1007/s00158-020-02552-0

Song, S. H., Antonelli, M., Fung, T. W. K., Armstrong, B. D., Chong, A., Lo, A., y Shi, B. E. (2019). Developing and assessing MATLAB exercises for active concept learning. IEEE Transactions on Education, 62(1), 2–10. https://doi.org/10.1109/TE.2018.2811406

Thomas, J. I. (2021). Multiple slit interference: a hyperbola based analysis. European Journal of Physics. https://doi.org/10.1088/1361-6404/ac05d3

Wang, K. (2021). A Theoretical Analysis Method of Spatial Analytic Geometry and Mathematics under Digital Twins. Advances in Civil Engineering, 2021(2018). https://doi.org/10.1155/2021/8910274

Yang, M., Hirt, C., y Pail, R. (2020). TGF: A new MATLAB-based software for terrain-related gravity field calculations. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071063

Yassein, S. y Aswhad, A. (2019). Efficient Iterative Method for solving Korteweg-de vries equations. Iraqi Journal of Science, 60(7), 1575–1583. https://doi.org/10.24996/ijs.2019.60.7.17

Ye, K., y Lim, L. H. (2018). Fast Structured Matrix Computations: Tensor Rank and Cohn–Umans Method. Foundations of Computational Mathematics, 18(1), 45–95. https://doi.org/10.1007/S10208-016-9332-X

You, K., y Park, H. J. (2021). Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity. NeuroImage, 225(August 2020), 117464. https://doi.org/10.1016/j.neuroimage.2020.117464

Zhao, N., y Chen, X. (2022). Exploring the integration of mathCAD-assisted mathematics experiments into higher mathematics teaching. Computer-Aided Design and Applications, 19(S1), 117–127. https://doi.org/10.14733/cadaps.2022.S1.117-127