Contenido principal del artículo

María Aurora Meza Salazar
Walter Luis Roldan Baluis

Este artículo tiene como objetivo examinar el impacto de la tecnología en la educación musical infantil mediante una revisión sistemática. Se seleccionaron 13 artículos publicados en la base de datos Scopus entre 2018 y 2022, siguiendo criterios de elegibilidad. Los resultados revelan que tecnologías como la inteligencia artificial, el aprendizaje profundo, robots, herramientas arteterapéuticas, realidad virtual, impresión 3D y tecnología 5D tienen un impacto significativo en la educación musical, especialmente en niños y aquellos con habilidades diferentes. Entre las implicaciones pedagógicas destacan la personalización del aprendizaje, el incremento de la motivación infantil y la mejora de los procesos de enseñanza y aprendizaje. Asimismo, se observó un predominio de los aportes positivos de la inteligencia artificial en estudios realizados en China. En conclusión, la inteligencia artificial y otras tecnologías emergentes desempeñan un papel clave en el desarrollo de la educación musical en niños.

This article aims to examine the impact of technology on early childhood music education through a systematic review. Thirteen articles published in the Scopus database between 2018 and 2022 were selected following eligibility criteria. The results reveal that technologies such as artificial intelligence, deep learning, robots, artetherapeutic tools, virtual reality, 3D printing and 5D technology have a significant impact on music education, especially in children and those with different abilities. Among the pedagogical implications are the personalization of learning, increased child motivation and improved teaching and learning processes. Likewise, a predominance of the positive contributions of artificial intelligence was observed in studies carried out in China. In conclusion, artificial intelligence and other emerging technologies play a key role in the development of music education for children.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Meza Salazar, M. A., & Roldan Baluis, W. L. (2024). La tecnología y su impacto en la educación musical en niños. Horizontes. Revista De Investigación En Ciencias De La Educación, 8(35), 2519–2532. https://doi.org/10.33996/revistahorizontes.v8i35.885
Sección
ARTÍCULO DE REVISIÓN
Bookmark and Share
Referencias

Abdel-malek, M. A., Sayed, M. M., y Azab, M. (2022). UAV-Based Privacy-Preserved Trustworthy Seamless Service. Sensors, 22(7), 1–19. https://doi.org/10.3390/s22072756

Addessi, A. R. (2020). A Device for Children’s Instrumental Creativity and Learning: An Overview of the MIROR Platform. Frontiers in Psychology, 11(November), 1–21. https://doi.org/10.3389/fpsyg.2020.516478

Al-Falahy, N., y Alani, O. (2017). Potential technologies to 5G network?: challenges and opportunities. It Professional, 10(1), 1–11. https://doi.org/10.1109/MITP.2017.9

Anaelka, A. H. (2018). Education 4.0 Made Simple: Ideas For Teaching. International Journal of Education and Literacy Studies, 6(3), 92. https://doi.org/10.7575/aiac.ijels.v.6n.3p.92

Anufrieva, N. I., Kamenets, A. V., Pereverzeva, M. V., y Kruglova, M. G. (2020). Features of the application of art-therapeutic and gaming technology based on folk music in rehabilitation and socialization of children with health limitations. Open Access Macedonian Journal of Medical Sciences, 8, 373–381. https://doi.org/10.3889/oamjms.2020.3588

Barua, P. D., Vicnesh, J., Gururajan, R., Oh, S. L., Palmer, E., Azizan, M. M., Kadri, N. A., y Acharya, U. R. (2022). Artificial Intelligence Enabled Personalised Assistive Tools to Enhance Education of Children with Neurodevelopmental Disorders—A Review. International Journal of Environmental Research and Public Health, 19(3), 2–26. https://doi.org/10.3390/ijerph19031192

Bozkurt, A., Karadeniz, A., Baneres, D., Guerrero-Roldán, A. E., y Rodríguez, M. E. (2021). Artificial intelligence and reflections from educational landscape: A review of AI studies in half a century. Sustainability (Switzerland), 13(2), 1–16. https://doi.org/10.3390/su13020800

Chiu, T. (2021). A holistic approach to Artificial Intelligence (AI) curriculum for K- 12 schools. TechTrends, 65, 796–807. https://doi.org/10.1007/s11528-021-00637-1

Chiu, T., Meng, H., Chai, C., King, I., y Wong, S. (2022). Creation and Evaluation of a Pretertiary Artificial Intelligence ( AI ) Curriculum. IEEE Transactions on Education, 65(1), 30–39. https://doi.org/10.1109/TE.2021.3085878

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., y De Felice, F. (2019). Artificial intelligence and machine learning applications in smart production: progress, trends, and di- rections. Sustainability, 12(2). https://doi.org/10.20944/preprints201912.0016.v1

Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., y Poor, H. V. (2016). Application of Non-orthogonal Multiple Access in LTE and 5G Networks. IEEE Communications Magazine, 55(2), 1–16. https://doi.org/10.1109/MCOM.2017.1500657CM

Esclapés, J., Gómez, A., y Ibañez, A. (2021). Flow. A socially responsible 3d printed one-handed recorder. International Journal of Environmental Research and Public Health, 18(22). https://doi.org/10.3390/ijerph182212200

Foster, D. J., Kale, S., Mohri, M., y Sridharan, K. (2017). Parameter-free online learning via model selection. Advances in Neural Information Processing Systems, 2017-Decem, 6021–6031. https://arxiv.org/pdf/1801.00101.pdf

Habibi, A., Cahn, B. R., Damasio, A., y Damasio, H. (2016). Neural correlates of accelerated auditory processing in children engaged in music training. Developmental Cognitive Neuroscience, 21, 1–14. https://doi.org/10.1016/j.dcn.2016.04.003

Holmes, W., Hui, Z., Miao, F., y Ronghuai, H. (2021). AI and education: A guidance for policymakers. UNESCO Publishing. http://refhub.elsevier.com/S2666-920X(22)00073-X/sref32

Innocenti, E. D., Geronazzo, M., Vescovi, D., Nordahl, R., Serafin, S., Ludovico, L. A., y Avanzini, F. (2019). Mobile virtual reality for musical genre learning in primary education. Computers and Education, 139, 102–117. https://doi.org/10.1016/j.compedu.2019.04.010

Johnson, K. W., Soto, J. T., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., y Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of The American College of Cardiology, 71(23). https://doi.org/10.1016/j.jacc.2018.03.521

Karaca, O., Çal??kan, S. A., y Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study. BMC Medical Education, 21(1), 1–9. https://doi.org/10.1186/s12909-021-02546-6

Kossyvaki, L., y Curran, S. (2020). The role of technology-mediated music-making in enhancing engagement and social communication in children with autism and intellectual disabilities. Journal of Intellectual Disabilities, 24(1), 118–138. https://doi.org/10.1177/1744629518772648

Lalitte, P., Bedoin, N., Pineau, M., Bigand, E., Neuroscience, L., Dynamique, L., Langage, D., Neuroscience, L., Cognition, A., y Team, P. (2019). Rhythmic and textural musical sequences influence differently syntax and semantic processing in children. Journal of Experimental Child Psychology, 191, 1–23. https://doi.org/10.1016/j.jecp.2019.104711

Lee, L., y Liu, Y. S. (2021). Training effects and intelligent evaluated pattern of the holistic music educational approach for children with developmental delay. International Journal of Environmental Research and Public Health, 18(19), 1–12. https://doi.org/10.3390/ijerph181910064

Lei, S., y Liu, H. (2022). Deep Learning Dual Neural Networks in the Construction of Learning Models for Online Courses in Piano Education. Computational Intelligence and Neuroscience, 2022, 1–8. https://doi.org/10.1155/2022/4408288

Li, H. (2021). Piano Education of Children Using Musical Instrument Recognition and Deep Learning Technologies Under the Educational Psychology. Frontiers in Psychology, 12(September), 1–11. https://doi.org/10.3389/fpsyg.2021.705116

Luo, L. (2022). Education Mode Reform of Colleges and Universities in Music Teaching under 5G Internet. Mobile Information Systems, 2022, 1–12. https://doi.org/10.1155/2022/7701567

Micha?ko, A., Campo, A., Nijs, L., Leman, M., y Van Dyck, E. (2022). Toward a meaningful technology for instrumental music education: Teachers’ voice. Frontiers in Education, 7(October), 1–18. https://doi.org/10.3389/feduc.2022.1027042

Moreno, S., y Lee, Y. (2019). Short-term Second Language and Music Training Induces Lasting Functional Brain Changes in Early Childhood. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1111/cdev.12297.Short-term

Nigam, A., Pasricha, R., Singh, T., y Churi, P. (2021). A Systematic Review on AI-based Proctoring Systems: Past, Present and Future. Education and Information Technologies, 26(5), 6421–6445. https://doi.org/10.1007/s10639-021-10597-x

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372, 1–9. https://doi.org/10.1136/bmj.n71

Phillips, L. (2000). Storytelling: The seeds of children’s creativity. Australasian Journal of Early Childhood, 25(3), 1–5. https://doi.org/10.1177/183693910002500302

Rahiem, M. (2021). Storytelling in early childhood education?: Time to go digital. International Journal of Child Care and Education Policy, 15(4), 2–20. https://doi.org/10.1186/s40723-021-00081-x

Wang, X., Zhao, S., Liu, J., y Wang, L. (2022). College music teaching and ideological and political education integration mode based on deep learning. Journal of Intelligent Systems, 31(1), 466–476. https://doi.org/10.1515/jisys-2022-0031

Williamson, B., Eynon, R., y Williamson, B. (2020). Historical threads , missing links , and future directions in AI in education education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995

Xia, Q., Chiu, T., Lee, M., Sanusi, I., Dai, Y., y Chai, C. (2022). A self-determination theory (SDT) design approach for inclusive and diverse artificial intelligence (AI) education. Computers & Education, 189(104582). https://doi.org/10.1016/j.compedu.2022.104582

Ying, B. (2022). Strategies for Improving the Quality of Music Teaching in Primary and Secondary Schools in the Context of Artificial Intelligence. Security and Communication Networks, 2022, 1–7. https://doi.org/10.1155/2022/4680905

Zhang, Y. (2022). Violin Teaching Improvement Strategy in the Context of Intelligent Internet of Things. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/3627113

Zhang, Y., Zhang, C., Cheng, L., y Qi, M. (2022). The Use of Deep Learning-Based Gesture Interactive Robot in the Treatment of Autistic Children Under Music Perception Education. Frontiers in Psychology, 13(February), 1–11. https://doi.org/10.3389/fpsyg.2022.762701